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}


    And before that, in the pre-alpha days of Rust, arrays were defined with 
a variadic macro. The /* something */ above was a [T, ..$N], where T is the 
type, and ..$N defines a range (I believe -- old Rust is weird) up to the 
number of specified elements.


Ouch.


The standard library generates a new type for each 0..=N for type T (e.g., 
[T; 0], [T; 1], [T; 2]).


This means that if we want to implement anything on top of array -- Ord, 
PartialEq, etc. -- that means we need to implement it for all types of the 
array. (And indeed, in old versions of Rust, array docs were really messy, 
as they showed each implementation for all N!)


This problem is the perfect candidate for a new type of generic: const 
generics.


Const generics are presented very eloquently in RFC 2000: Const Generics. 
I'm going to summarize that RFC later on, with some tangents where 
appropriate, but let's start with a brief overview of the topic.


On its own, a const generic is generic that is restricted to be a specific 
constant value, specified (simply) with the const keyword2. I think they're 
best understood in the context of monomorphization.


[insert code]


This reveals the motivation behind the humble const generic. If we want to 
have a type that is exclusively distinguished by a constant (some might say 
"by association" of a constant), then a const generic is a fantastic 
qualifier. (Arrays are a good example here.) Otherwise, if a type will have 
many invocations with different values, it may be better to stick to a 
traditional parameter-in-struct approach.


Now that we've established the basics of const generics, let's dig more into 
the edge cases we may encounter.




explain the why



write slides
(for real this time)



BIG 

and 

SIMPLE



design for the 
back of the 
room



make sure to put…

- little to no text on the slides

- so that as a listener

- there is little to no text on each slide

- i can read each slide in a reasonable 

amount of time

- and also listen to the speaker

- instead of reading your powerpoint essay



make sure to put

little to no text



make sure to put

little to no text

(this is also accessibility!)



look at this cat picture







make sure to put

little to no code









make code

digestible



func scrollViewDidScroll(_ scrollView: UIScrollView) {


    let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


    if lastContentOffset < contentOffset && !isTopOverscroll {


        scrollDirection = .down


    } else if lastContentOffset > contentOffset {


        scrollDirection = .up


    } else {


        scrollDirection = .unknown


    }


    lastContentOffset = scrollView.contentOffset.y


}



func scrollViewDidScroll(_ scrollView: UIScrollView) {


    let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


    if lastContentOffset < contentOffset && !isTopOverscroll {


        scrollDirection = .down


    } else if lastContentOffset > contentOffset {


        scrollDirection = .up


    } else {


        scrollDirection = .unknown


    }


    lastContentOffset = scrollView.contentOffset.y


}

get rid of parts you don’t need



func scrollViewDidScroll(_ scrollView: UIScrollView) {


    let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


    if lastContentOffset < contentOffset && !isTopOverscroll {


        scrollDirection = .down


    } else if lastContentOffset > contentOffset {


        scrollDirection = .up


    } else {


        scrollDirection = .unknown


    }


    lastContentOffset = scrollView.contentOffset.y


}

get rid of parts you don’t need



if lastContentOffset < contentOffset {


    scrollDirection = .down


} else if lastContentOffset > contentOffset {


    scrollDirection = .up


} else {


    scrollDirection = .unknown


}


lastContentOffset = scrollView.contentOffset.y

get rid of parts you don’t need



if lastContentOffset < contentOffset {


    scrollDirection = .down


} else if lastContentOffset > contentOffset {


    scrollDirection = .up


} else {


    scrollDirection = .unknown


}


lastContentOffset = scrollView.contentOffset.y

reduce duplication



if lastContentOffset < contentOffset {


    scrollDirection = .down


} else if lastContentOffset > contentOffset {


    scrollDirection = .up


} else {


    scrollDirection = .unknown


}


lastContentOffset = scrollView.contentOffset.y

reduce duplication



if lastContentOffset < contentOffset {


    // down


} else if lastContentOffset > contentOffset {


    // up


} else {


    // unknown


}


lastContentOffset = scrollView.contentOffset.y

reduce duplication



if lastContentOffset < contentOffset {


    // down


} else if lastContentOffset > contentOffset {


    // up


} else {


    // unknown


}


lastContentOffset = scrollView.contentOffset.y

don’t really syntax highlight



if lastContentOffset < contentOffset {


    // down


} else if lastContentOffset > contentOffset {


    // up


} else {


    // unknown


}


lastContentOffset = scrollView.contentOffset.y

don’t really syntax highlight



let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


if lastContentOffset < contentOffset && !isTopOverscroll {


    scrollDirection = .down


} else if lastContentOffset > contentOffset {


    scrollDirection = .up


} else {


    scrollDirection = .unknown


}


lastContentOffset = scrollView.contentOffset.y

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


don’t really syntax highlight



let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


don’t really syntax highlight

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


if lastContentOffset < contentOffset {


    // down


} else if lastContentOffset > contentOffset {


    // up


} else {


    // unknown


}


lastContentOffset = scrollView.contentOffset.y



let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


don’t really syntax highlight

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


if lastContentOffset < contentOffset && !isTopOverscroll {

    // down


} else if lastContentOffset > contentOffset {


    // up


} else {


    // unknown


}


lastContentOffset = scrollView.contentOffset.y



let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)


don’t really syntax highlight

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

if lastContentOffset < contentOffset && !isTopOverscroll {


    // down


} else if lastContentOffset > contentOffset {


    // up


} else {


    // unknown


}


lastContentOffset = scrollView.contentOffset.y



<light mode>





</light mode>



make sure to put

little to no animations





pick some 

colors and fonts



pick some 

colors and fonts

coolors.co

http://coolors.co
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don't mix 

red/green 


 
(10% US men,

5% US women)

be careful about 
blue/yellow 


 
(1% overall)

contrast is 10x 
worse on projector
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