
Peter Kos // 1/31/23 // WT

How To

Presentations

101

Before

During

After

Before

…

✨Idea

decide your audience

✨Idea

decide your audience

decide your audience

vs.
people who used git
for a while, maybe

are lost?

people who know

enough to be

 confused, frustrated

decide your audience

people who used git
for a while, maybe are

lost?

decide your audience

people who used git
for a while, maybe are

lost?

people who know

enough to be

 confused, frustrated

decide your audience

✨Idea

decide your audience

✨Idea

decide your audience

✨Idea

write an outline

simple

hierarchical

rule of 3

give the talk without slides
(ideally)

simple

hierarchical give the talk without slides
rule of 3

(ideally)

give the talk without slides
(ideally)

decide your audience

✨Idea

write an outline

decide your audience

✨Idea

write an outline

write slides

write slides

write slides

 live with code

make font big enough

make font big
enough

try to match what

your audience uses

give time to read

}

 And before that, in the pre-alpha days of Rust, arrays were defined with
a variadic macro. The /* something */ above was a [T, ..$N], where T is the
type, and ..$N defines a range (I believe -- old Rust is weird) up to the
number of specified elements.

Ouch.

The standard library generates a new type for each 0..=N for type T (e.g.,
[T; 0], [T; 1], [T; 2]).

This means that if we want to implement anything on top of array -- Ord,
PartialEq, etc. -- that means we need to implement it for all types of the
array. (And indeed, in old versions of Rust, array docs were really messy,
as they showed each implementation for all N!)

This problem is the perfect candidate for a new type of generic: const
generics.

Const generics are presented very eloquently in RFC 2000: Const Generics.
I'm going to summarize that RFC later on, with some tangents where
appropriate, but let's start with a brief overview of the topic.

On its own, a const generic is generic that is restricted to be a specific
constant value, specified (simply) with the const keyword2. I think they're
best understood in the context of monomorphization.

[insert code]

This reveals the motivation behind the humble const generic. If we want to
have a type that is exclusively distinguished by a constant (some might say
"by association" of a constant), then a const generic is a fantastic
qualifier. (Arrays are a good example here.) Otherwise, if a type will have
many invocations with different values, it may be better to stick to a
traditional parameter-in-struct approach.

Now that we've established the basics of const generics, let's dig more into
the edge cases we may encounter.

explain the why

write slides
(for real this time)

BIG

and

SIMPLE

design for the
back of the
room

make sure to put…

- little to no text on the slides

- so that as a listener

- there is little to no text on each slide

- i can read each slide in a reasonable

amount of time

- and also listen to the speaker

- instead of reading your powerpoint essay

make sure to put

little to no text

make sure to put

little to no text

(this is also accessibility!)

look at this cat picture

make sure to put

little to no code

make code

digestible

func scrollViewDidScroll(_ scrollView: UIScrollView) {

 let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

 if lastContentOffset < contentOffset && !isTopOverscroll {

 scrollDirection = .down

 } else if lastContentOffset > contentOffset {

 scrollDirection = .up

 } else {

 scrollDirection = .unknown

 }

 lastContentOffset = scrollView.contentOffset.y

}

func scrollViewDidScroll(_ scrollView: UIScrollView) {

 let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

 if lastContentOffset < contentOffset && !isTopOverscroll {

 scrollDirection = .down

 } else if lastContentOffset > contentOffset {

 scrollDirection = .up

 } else {

 scrollDirection = .unknown

 }

 lastContentOffset = scrollView.contentOffset.y

}

get rid of parts you don’t need

func scrollViewDidScroll(_ scrollView: UIScrollView) {

 let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

 if lastContentOffset < contentOffset && !isTopOverscroll {

 scrollDirection = .down

 } else if lastContentOffset > contentOffset {

 scrollDirection = .up

 } else {

 scrollDirection = .unknown

 }

 lastContentOffset = scrollView.contentOffset.y

}

get rid of parts you don’t need

if lastContentOffset < contentOffset {

 scrollDirection = .down

} else if lastContentOffset > contentOffset {

 scrollDirection = .up

} else {

 scrollDirection = .unknown

}

lastContentOffset = scrollView.contentOffset.y

get rid of parts you don’t need

if lastContentOffset < contentOffset {

 scrollDirection = .down

} else if lastContentOffset > contentOffset {

 scrollDirection = .up

} else {

 scrollDirection = .unknown

}

lastContentOffset = scrollView.contentOffset.y

reduce duplication

if lastContentOffset < contentOffset {

 scrollDirection = .down

} else if lastContentOffset > contentOffset {

 scrollDirection = .up

} else {

 scrollDirection = .unknown

}

lastContentOffset = scrollView.contentOffset.y

reduce duplication

if lastContentOffset < contentOffset {

 // down

} else if lastContentOffset > contentOffset {

 // up

} else {

 // unknown

}

lastContentOffset = scrollView.contentOffset.y

reduce duplication

if lastContentOffset < contentOffset {

 // down

} else if lastContentOffset > contentOffset {

 // up

} else {

 // unknown

}

lastContentOffset = scrollView.contentOffset.y

don’t really syntax highlight

if lastContentOffset < contentOffset {

 // down

} else if lastContentOffset > contentOffset {

 // up

} else {

 // unknown

}

lastContentOffset = scrollView.contentOffset.y

don’t really syntax highlight

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

if lastContentOffset < contentOffset && !isTopOverscroll {

 scrollDirection = .down

} else if lastContentOffset > contentOffset {

 scrollDirection = .up

} else {

 scrollDirection = .unknown

}

lastContentOffset = scrollView.contentOffset.y

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

don’t really syntax highlight

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

don’t really syntax highlight

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

if lastContentOffset < contentOffset {

 // down

} else if lastContentOffset > contentOffset {

 // up

} else {

 // unknown

}

lastContentOffset = scrollView.contentOffset.y

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

don’t really syntax highlight

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

if lastContentOffset < contentOffset && !isTopOverscroll {

 // down

} else if lastContentOffset > contentOffset {

 // up

} else {

 // unknown

}

lastContentOffset = scrollView.contentOffset.y

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

don’t really syntax highlight

let isTopOverscroll = contentOffset < (-1 * headerView.bounds.height)

if lastContentOffset < contentOffset && !isTopOverscroll {

 // down

} else if lastContentOffset > contentOffset {

 // up

} else {

 // unknown

}

lastContentOffset = scrollView.contentOffset.y

<light mode>

</light mode>

make sure to put

little to no animations

pick some

colors and fonts

pick some

colors and fonts

coolors.co

http://coolors.co

accessibility 101

accessibility 101

don't mix

red/green

 
(10% US men,

5% US women)

be careful about
blue/yellow

 
(1% overall)

contrast is 10x
worse on projector

decide your audience

✨Idea

write an outline

write slides

decide your audience

✨Idea

write an outline

write slides

decide your audience

✨Idea

write an outline

write slides

prep

practise makes prefect

prep

pacing

prep

laptop, charger, usb-c adapter

prep

laptop, charger, usb-c adapter

prep

backup .pdf slide copy DM'd in slack

laptop, charger, usb-c adapter

prep

backup .pdf slide copy DM'd in slack

comfortable outfit

water bottle

decide your audience

✨Idea

write an outline

write slides

prep

decide your audience

✨Idea

write an outline

write slides

prep

During

zoom in person

zoom

can you see my screen? 🥺👉👈

zoom

“Hey, DM me if
there’s an issue!”

zoom

turn on do not disturb
(sponsored by peter’s discord)

zoom

you don't have much

body language

to work with

zoom

you don't have much

body language

to work with

need to storytell

with your voice

in person

in person

your body language
is your tool

(re: narrative)

in person

Not everyone is in person!

in person

Not everyone is in person!but this is a

good thing

recording

After

post slides

avenue for questions

Parting resources

Great for
in-person,
technical

talks

A lot of
today’s

info

Voice,
narrative,
education

Peter Kos // 1/31/23 // WT

How To
Presentations
101
